3-Dimensional Time-Domain Full-Wave Analysis of Optical Array Antennas
نویسندگان
چکیده
منابع مشابه
Locally one-dimensional finite-difference time-domain scheme for the full-wave semiconductor device analysis
The application of an unconditionally stable locally one-dimensional finite-difference time-domain (LOD-FDTD) method for the full-wave simulation of semiconductor devices is described. The model consists of the electron equations for semiconductor devices in conjunction with Maxwell’s equations for electromagnetic effects. Therefore the behaviour of an active device at high frequencies is descr...
متن کاملOptical beam forming for phased-array antennas
communications spectrum from copper cables, optical fibres, microwaves, radio and electromagnetic compatibility. Our research concentrates on optical signal processing and networks, mobile communications, microwave techniques and radiation from ICs and PCBs [1]. A considerable (and particularly interesting) part of it is related to optical beam forming for phased array antennas, using optical r...
متن کاملan infinite planar array of rectangular microstrip patch antenna analysis
the methods which are used to analyze microstrip antennas, are divited into three categories: empirical methods, semi-empirical methods and full-wave analysis. empirical and semi-empirical methods are generally based on some fundamental simplifying assumptions about quality of surface current distribution and substrate thickness. thses simplificatioms cause low accuracy in field evaluation. ful...
15 صفحه اولTime-domain Analysis of Conducting Wire Antennas and Scatterers
In this work, a new method is presented for analyzing the transient electromagnetic response from conducting wire structures using the time-domain integral equation (TDIE). Instead of the conventional marching-on in time (MOT) technique, this solution method is based on Galerkin’s method, which involves separate spatial and temporal testing procedures. Piecewise triangle basis functions have be...
متن کاملFull-color lens-array holographic optical element for three-dimensional optical see-through augmented reality.
A novel system of optical see-through augmented reality (AR) is proposed by making use of a holographic optical element (HOE) with full-color and lens-array functions. The full-color lens-array HOE provides see-through property with three-dimensional (3D) virtual images, for it functions as a conventional lens array only for Bragg-matched lights. An HOE recording setup was built, and it recorde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Theoretical Nanoscience
سال: 2011
ISSN: 1546-1955,1546-1963
DOI: 10.1166/jctn.2011.1852